Lexas Activity University College Station, Texas ## Summer Ammonia Emission Rates From Free-Stall and Open-Lot Dairies in Central Texas Atilla Mutlu, Saqib Mukhtar, Sergio C. Capareda, Cale N. Boriack, Ronald E. Lacey, Bryan W. Shaw, and Calvin B. Parnell, Jr. #### CAAQES Center for Agricultural Air Quality Engineering and Science Department of Biological and Agricultural Engineering Texas A&M University College Station, Texas ### Texas A&M University College Station, Texas #### Introduction NH3 emissions may be regulated in future College Station, Texas ### Study Objective ✓ To estimate and compare summer ammonia emission rates (ERs) of free-stall and open-lot dairies using a flux chamber protocol. #### This protocol resulted in: - real-time estimations - emission fluxes and rates. College Station, Texas ### Sampled Dairies Free-stall Dairy **Open-lot Dairy** ### Center for Agricultural Air Quality Engineering & Science CAAQES ### Sampling Equipment Flux Chamber Sampling T probe **Vent port** port **Hemispherical** dome **Dome** Height=16.5cm Sweep air inlet Rubber **Gasket** Cylinder Height=22.9cm Cylindrica Skirt D=49.5cm College Station, Texas #### Flux Chamber & Analyzer Setup ### Free-Stall Sampling #### Free-stall Dairy Lagoon Sampling ### **Open-lot Sampling** ### Open-lot Dairy Lagoon Sampling ### NH₃ Flux & Emission Rate Calculations $$C_{mass} = 1000 \times \left(\frac{P}{RT}\right) \times C_{ppm} \times MW_{p}$$ $$EFl_{NH_3} = \frac{C_{mass} \times V_{fc}}{A_{FC}}$$ $$ER = EFlxA$$ ### College Station, Texas #### Number Mass Flow **Emission Emission Flux** Concentration Area **GLAS** of Concentration Rate Rates (ppm) $(\mu g/m^2/s)$ (m²)Samples $(\mu g/m^3)$ (L/min) (kg/day) Compost 1.17 ± 0.97 b 11 1.9 ± 1.6^{b} 1321 7.10 0.81 ± 0.7^{b} 16600 Freestall 14 9790 5 57.5 ± 50.5 33349 7.09 20.53 ± 23 4.79 ± 5.4 Non-feed 2700 Feed 5 74.0 ± 72.4 51574 7.09 31.75 ± 31 3090 8.48 ± 8.3 Bedding 2 2.4 ± 22.2 1.05 ± 9.5 0.34 ± 3.1 1698 7.09 3800 Water Area 2 21.7 ± 84.4 7.09 9.30 ± 36.2 0.16 ± 0.63 15113 200 Open Lot 8 4.8 ± 3.9 3317 7.10 2.05 ±1.7 38000 6.72 ± 5.5 **Crowding Area** 4 9.6 ± 8.2 6690 7.03 4.06 ± 3.4 925 0.32 ± 0.3 Separated **Solids** 4 3.7 ± 7.2 2428 7.09 1.50 ± 2.9 109 0.01 ± 0.03 8 32.8 ± 7.1 22878 14.09 ±3.0 23.4 ± 5 Lagoon 1 7.10 19200 Lagoon 2 6 28.1 ±2.9 19588 7.10 12.07 ± 1.3 17000 17.72 ± 1.9 Statistic 55a 101624a 63.1 a ±31.1 NH₃ Concentrations & ERs for Free-stall Dairy ^b 95% confidence interval (CI) ## Texas A&M University College Station, Texas ## College Station, Texas Spatial variability of ammonia concentrations at the open-lot corral ## College Station, Texas Normalization Process of OpenIot Corrals Data Log-Normal Distribution of Corrals Data ### College Station, Texas ### NH₃ Concentrations & ERs for Open-lot Dairy | GLAS | Number
of
Samples | Concentration (ppm) | Mass
Concentration
(μg/m³) | Flow
Rate
(L/min) | Emission
Flux
(μg/m²/s) | Area
(m²) | Emission
Rates
(kg/day) | |-----------------------------------|-------------------------|-------------------------|----------------------------------|-------------------------|-------------------------------|--------------|-------------------------------| | Open Lots
(earthen
corrals) | 72 | 2.9 (±0.1) ^b | 2076 (±44) | 7.1
(±0.01) | 1.3 (±0.3) | 102840 | 11.4 (±0.2) | | Lagoon-1 | 8 | 11.2 (±0.9) | 7810 (±657) | 7.1
(±0.01) | 4.8 (±0.4) | 6273 | 2.6 (±0.2) | | Lagoon-2 | 35 | 3.8 (±0.6) | 2660 (±444) | 7.1
(±0.01) | 1.6 (±0.3) | 46094 | 6.5 (±1.1) | | Milking Parlor | 6 | 5.6 (±4.1) | 3896 (±2877) | 7.1
(±0.02) | 2.4 (±1.8) | 500 | 0.1 (±0.1) | | MP Alley | 5 | 0.8 (±0.4) | 575 (±306) | 7.1
(±0.02) | 0.4 (±0.2) | 1500 | 0.05 (±0.02) | | Statistic | 126ª | - | - | - | - | 157207ª | 20.6 a ± 1.6 | ^a Summation ^b 95% confidence interval (CI) ## Texas A&M University College Station, Texas ### Key Results - ✓ The estimated emission rates for the facilities: 63.1 ± 31.1 kg.day⁻¹ (free-stall dairy) 20.6 ± 1.6 kg.day⁻¹ (open-lot dairy). - ✓ Lagoons (65%) and open-lot corrals (55%) were the highest contributors to NH₃ emission for the facilities. - ✓ Higher NH₃ ERs from the free-stall dairy were due to higher NH₃ concentration as a result of greater manure loading of lagoons and barns as compared to open-lot dairy lagoons and corrals. #### Conclusions - ✓ Difference between the overall emission rates from each dairy was due to: - 1- Dairy waste loading rates - 2- Animal population density (corrals vs. free-stall). - 3- Waste management practices - ✓ There is a need for an accurate technique to measure NH₃ emissions from (AFOs) to obtain reliable emissions data. - ✓ Long-term studies needed to examine the impact of management practices on reducing NH₃ emissions from AFOs.