Lexas Activity University College Station, Texas

Summer Ammonia Emission Rates From Free-Stall and Open-Lot Dairies in Central Texas

Atilla Mutlu, Saqib Mukhtar, Sergio C. Capareda, Cale N. Boriack, Ronald E. Lacey, Bryan W. Shaw, and Calvin B. Parnell, Jr.

CAAQES

Center for Agricultural Air Quality
Engineering and Science
Department of Biological and Agricultural Engineering
Texas A&M University
College Station, Texas

Texas A&M University College Station, Texas

Introduction

NH3 emissions may be regulated in future

College Station, Texas

Study Objective

✓ To estimate and compare summer ammonia emission rates (ERs) of free-stall and open-lot dairies using a flux chamber protocol.

This protocol resulted in:

- real-time estimations
- emission fluxes and rates.

College Station, Texas

Sampled Dairies

Free-stall Dairy

Open-lot Dairy

Center for Agricultural Air Quality Engineering & Science CAAQES

Sampling Equipment

Flux Chamber Sampling T probe **Vent port** port **Hemispherical** dome **Dome** Height=16.5cm Sweep air inlet Rubber **Gasket** Cylinder Height=22.9cm Cylindrica Skirt D=49.5cm

College Station, Texas

Flux Chamber & Analyzer Setup

Free-Stall Sampling

Free-stall Dairy Lagoon Sampling

Open-lot Sampling

Open-lot Dairy Lagoon Sampling

NH₃ Flux & Emission Rate Calculations

$$C_{mass} = 1000 \times \left(\frac{P}{RT}\right) \times C_{ppm} \times MW_{p}$$

$$EFl_{NH_3} = \frac{C_{mass} \times V_{fc}}{A_{FC}}$$

$$ER = EFlxA$$

College Station, Texas

Number Mass Flow **Emission Emission Flux** Concentration Area **GLAS** of Concentration Rate Rates (ppm) $(\mu g/m^2/s)$ (m²)Samples $(\mu g/m^3)$ (L/min) (kg/day) Compost 1.17 ± 0.97 b 11 1.9 ± 1.6^{b} 1321 7.10 0.81 ± 0.7^{b} 16600 Freestall 14 9790 5 57.5 ± 50.5 33349 7.09 20.53 ± 23 4.79 ± 5.4 Non-feed 2700 Feed 5 74.0 ± 72.4 51574 7.09 31.75 ± 31 3090 8.48 ± 8.3 Bedding 2 2.4 ± 22.2 1.05 ± 9.5 0.34 ± 3.1 1698 7.09 3800 Water Area 2 21.7 ± 84.4 7.09 9.30 ± 36.2 0.16 ± 0.63 15113 200 Open Lot 8 4.8 ± 3.9 3317 7.10 2.05 ±1.7 38000 6.72 ± 5.5 **Crowding Area** 4 9.6 ± 8.2 6690 7.03 4.06 ± 3.4 925 0.32 ± 0.3 Separated **Solids** 4 3.7 ± 7.2 2428 7.09 1.50 ± 2.9 109 0.01 ± 0.03 8 32.8 ± 7.1 22878 14.09 ±3.0 23.4 ± 5 Lagoon 1 7.10 19200 Lagoon 2 6 28.1 ±2.9 19588 7.10 12.07 ± 1.3 17000 17.72 ± 1.9 Statistic 55a 101624a 63.1 a ±31.1

NH₃ Concentrations & ERs

for Free-stall Dairy

^b 95% confidence interval (CI)

Texas A&M University College Station, Texas

College Station, Texas

Spatial variability of ammonia

concentrations at the open-lot corral

College Station, Texas

Normalization Process of OpenIot Corrals Data

Log-Normal Distribution of Corrals Data

College Station, Texas

NH₃ Concentrations & ERs for Open-lot Dairy

GLAS	Number of Samples	Concentration (ppm)	Mass Concentration (μg/m³)	Flow Rate (L/min)	Emission Flux (μg/m²/s)	Area (m²)	Emission Rates (kg/day)
Open Lots (earthen corrals)	72	2.9 (±0.1) ^b	2076 (±44)	7.1 (±0.01)	1.3 (±0.3)	102840	11.4 (±0.2)
Lagoon-1	8	11.2 (±0.9)	7810 (±657)	7.1 (±0.01)	4.8 (±0.4)	6273	2.6 (±0.2)
Lagoon-2	35	3.8 (±0.6)	2660 (±444)	7.1 (±0.01)	1.6 (±0.3)	46094	6.5 (±1.1)
Milking Parlor	6	5.6 (±4.1)	3896 (±2877)	7.1 (±0.02)	2.4 (±1.8)	500	0.1 (±0.1)
MP Alley	5	0.8 (±0.4)	575 (±306)	7.1 (±0.02)	0.4 (±0.2)	1500	0.05 (±0.02)
Statistic	126ª	-	-	-	-	157207ª	20.6 a ± 1.6

^a Summation

^b 95% confidence interval (CI)

Texas A&M University College Station, Texas

Key Results

- ✓ The estimated emission rates for the facilities:
 63.1 ± 31.1 kg.day⁻¹ (free-stall dairy)
 20.6 ± 1.6 kg.day⁻¹ (open-lot dairy).
- ✓ Lagoons (65%) and open-lot corrals (55%) were the highest contributors to NH₃ emission for the facilities.
- ✓ Higher NH₃ ERs from the free-stall dairy were due to higher NH₃ concentration as a result of greater manure loading of lagoons and barns as compared to open-lot dairy lagoons and corrals.

Conclusions

- ✓ Difference between the overall emission rates from each dairy was due to:
 - 1- Dairy waste loading rates
 - 2- Animal population density (corrals vs. free-stall).
 - 3- Waste management practices
- ✓ There is a need for an accurate technique to measure NH₃ emissions from (AFOs) to obtain reliable emissions data.
- ✓ Long-term studies needed to examine the impact of management practices on reducing NH₃ emissions from AFOs.

