UNCERTAINTY ASSOCIATED WITH PARTICULATE MATTER CONCENTRATION MEASUREMENTS FROM AGRICULTURAL OPERATIONS Jacqueline E. Price, Ron E. Lacey, Bryan W. Shaw, Calvin B. Parnell, Jr. Center for Agricultural Air Quality Engineering and Science Texas A&M University College Station, TX

<u>Abstract</u>

Gravimetric measurement of particulate matter (PM) concentrations in ambient environments is the basis for regulation of PM fractions (i.e. PM_{10} and $PM_{2.5}$) under the Federal Clean Air Act. While the measurement is straight forward, inherent elements of uncertainty enter the analysis, resulting in much larger uncertainty in the concentration calculation. This paper discusses the importance of uncertainty approximation and analyzes the uncertainty inherent in a gravimetric PM concentration measurement. Utilizing a first order Taylor Series approximation and analytical derivatives, the overall system uncertainty is computed. Additionally, this paper uses a sensitivity analysis of the contributing uncertainty elements in order to identify the most critical measurements and their implications on the calibration, operation, and design of PM samplers.

Introduction

Gravimetric measurement of particulate matter (PM) concentration in ambient environments is the basis for regulation of PM fractions (i.e. PM_{10} and $PM_{2.5}$) under the Federal Clean Air Act. In cotton ginning, particulate matter (PM) is considered the primary emitted air pollutant. In general, PM emissions from gins processing picker-harvested cotton are typically less than those of gins processing stripper-harvested cotton, and the PM emissions from the ginning of the first harvest of cotton are generally less than the PM emissions from later harvests (U.S. EPA, 1995). Additionally, data shows that approximately 37% of the total PM emitted from cotton ginning (following PM control systems) is PM_{10} , which describes particulate matter with an aerodynamic equivalent diameter less than or equal to 10 μ m (U.S. EPA, 1995). However, we know that assuming a lognormal particle size distribution of the PM in the air with a typical cotton gin dust mass median diameter of 20 μ m and GSD of 2.0, the mass of PM_{10} on the filter equals approximately 16% of the total suspended particulate matter measured (Wang, 2000).

While these PM measurements are straight forward, numerous elements of uncertainty can enter the analysis, resulting in much larger uncertainty in the concentration calculation. This discussion covers the incorporation of uncertainty analysis in gravimetric measurement of particulate matter.

A measurement of a variable can only provide a deterministic estimate of the quantity being measured; thus, it can only be considered complete when supplemented by a quantitative statement of the inaccuracies surrounding the measurement. Therefore, proper experimental planning and design requires an understanding of the errors inherent in these measurements so that the experimenter can have some degree of certainty in the final measurements and calculations.

Uncertainty can be defined as the statistical representation of the reliability associated with a specific set of measurements (Yegnan et al., 2002). Uncertainty can also be described as the possible set of values on a given measurement and can be considered a statistical variable (Kline, 1985). The term *error* takes on a slightly different definition. The total error, δ , is the difference between the measured value and the true value of the quantity being measured. It can also be thought of as the sum of the *systematic error* and the *random error*, $\delta = \beta + \varepsilon$, where β is the systematic error and ε is the random error (ANSI/ASME, 1998). This is illustrated by Figure 1.

Systematic error, β , also known as fixed error or bias, is defined as the constant element of the total error, δ ; therefore, this error value remains constant for each measurement. Random error, ϵ , also known as repeatability error or precision error, is the random error element of the total error, thus each

measurement takes on a different value for this part of the total error measurement (ANSI/ASME, 1998). Thus, the term error refers to a fixed quantity, and it cannot be considered a statistical variable.

Many of the current methods of estimating the uncertainty surrounding experimental results are based upon an analysis by Kline and McClintock (1953). With the goal in mind of determining the effects of each potential measurement error, they proposed a process which considers the impact of these individual uncertainties, commonly referred to as the propagation of uncertainty (Kline and McClintock, 1953). This process involves a Taylor series approximation to estimate the uncertainty in various circumstances.

Objectives

The objectives of this uncertainty analysis are:

- 1. To determine the uncertainty surrounding the gravimetric particulate matter (PM) concentration using a first-order Taylor series approximation method.
- 2. To identify the most critical measurements and their implications on the calibration, operation, and design of PM samplers using a sensitivity analysis.

Methodology

The impact of the individual uncertainties of each primary measurement in an experiment on the total systematic uncertainty of the experiment must be approximated. This idea is commonly referred to as the law of propagation of uncertainty (ISO, 1995). The uncertainties from the individual independent variables propagate through a data reduction equation into a resulting overall measurement of uncertainty as demonstrated in Figure 2 (Coleman & Steele, 1999).

Primary Systematic Uncertainty Determination

Manufacturers specify the accuracy of their respective measurement instrument, and this information is used in this analysis as the value for the systematic uncertainty of the measuring device. This accuracy specification takes into account various factors such as linearity, gain, and zero errors (Coleman & Steele, 1999). All of the uncertainty values used in this discussion except for that of the pressure drop across the orifice meter (ΔP_a) were obtained from the specifications on the manufacturers' data sheets. The uncertainty value given by the manufacturer must include any sensor or transducer bias in the system. In the case of the ΔP_a reading from the Hobo instrument, the bias in both the pressure transducer and the Hobo data logger must be accounted for.

Uncertainty Propagation Calculation

With the individual systematic uncertainties now determined, the propagated systematic uncertainty can be calculated. Assuming that all individual uncertainties are at the same confidence level (95% confidence interval or 20:1 odds in this instance), let *Y* be a function of independent variables $x_1, x_2, x_3, ..., x_n$. Therefore, the data reduction equation for determining Y from each x_i is

$$Y = Y(x_1, x_2, ..., x_n)$$
[1],

Furthermore, let ω be defined as the systematic uncertainty in the result and $\omega_1, \omega_2, \dots, \omega_n$ as the systematic uncertainties in each of the above independent variables. Given the same confidence interval on each of the independent (uncorrelated) variables, the resulting systematic uncertainty of Y, ω_Y , can be calculated as the positive square root of the estimated variance, ω_y^2 , from the following equation (Holman, 2001)

$$\omega_{\gamma} = \pm \sqrt{\omega_{\gamma}^{2}}$$
[2],

where the variance, ω_y^2 , is calculated by

$$\omega_Y^2 = \left(\frac{\delta Y}{\delta x_1}\omega_1\right)^2 + \left(\frac{\delta Y}{\delta x_2}\omega_2\right)^2 + \dots + \left(\frac{\delta Y}{\delta x_n}\omega_n\right)^2$$
[3],

or

$$\omega_{Y}^{2} = (\theta_{1}\omega_{1})^{2} + (\theta_{2}\omega_{2})^{2} + \dots + (\theta_{n}\omega_{n})^{2}$$
[4],

where θ , the *sensitivity coefficient*, is defined as

$$\theta_i = \frac{\delta Y}{\delta x_i}$$
[5].

Gravimetric Sampling Governing Equations

The concentration of particulate matter (PM) in the air can be measure by gravimetric means, where the PM in the air is captured on a filter and then weighed. The particulate matter concentration is a function of the mass of PM collected in a known volume of air as indicated in equation 6 below.

$$C = \frac{W}{V}$$
[6],

where C is the concentration, W is the mass of PM_{10} collected on the filter, and V is the total volume of air through the system during the entire time of sampling. Both W and V are calculated quantities from other measurements. Therefore, these quantities must be reduced to basic measurements as seen in Figure 3.

First, the mass on the filter, W, is necessary. Assuming a lognormal particle size distribution of the PM in the air with a typical cotton gin dust mass median diameter of 20 μ m and GSD of 2.0, the mass of PM₁₀ on the filter equals approximately 16% of the total suspended particulate matter measured (Wang, 2000). Therefore, the mass of PM₁₀ on the filter is calculated by equation 7.

$$W = 0.16 * (W_f - W_i)$$
[7],

where W_f is the weight of the filter and PM after the sampling period and W_i is the weight of the bare filter before the sampling period. These filters are weighed three times before and after sampling under controlled environmental conditions (relative humidity and temperature has an impact on the accuracy), and the mean of each of these three measurements is used. Both W_f and W_i are primary measured quantities, so no further reduction is necessary.

The total volume of air in ft³, V, used during the sampling time is determined by equation 8.

$$V = Q^* \Theta$$
^[8]

where Q is the volumetric flow rate in cfm and θ is the elapsed time of the test in minutes. The elapsed time of the test, θ , is a measured quantity; however, Q is not. So, Q must be evaluated further. Each gravimetric sampler uses a fan or pump to draw air downward through the filter. The fan/pump setup includes an orifice meter in the line to the sampler in order to calculate the volumetric flow rate of air through the tube. The volumetric flow rate in cfm, Q, is calculated from the pressure drop across an

orifice meter as in the following equation, which is derived from Bernoulli's equation (Sorenson and Parnell, 1991).

$$Q = 5.976 * k * (D_0)^2 * \sqrt{\frac{\Delta P_a}{\rho_a}}$$
[9]

where k is a calibration constant for the orifice meter, ΔP_a is the measured pressure drop across the orifice meter in inches of water using a transducer output to a data logger to record the instantaneous pressure drop across the orifice meter, ρ_a is the mean air density in lbs*ft⁻³, and D₀ is the diameter of the orifice in inches determined by the end mill specifications. For field sampling measurements, the gas used is air where the air density in lbs*ft⁻³ can be estimated by equation 10 (Cooper and Alley, 1994).

$$\rho_a = \left[\frac{P_a - RH * P_s}{0.37 * (460 + T)}\right] + \left[\frac{RH * P_s}{0.596 * (460 + T)}\right]$$
[10],

where P_s is the saturated vapor pressure in $lbs*in^{-2}$ at T (Engineering Toolbox, 2003), T is the dry bulb temperature of the air in degrees Fahrenheit, and RH is the relative humidity fraction of the air. In three of the four examples that follow, the value of k is determined against a laminar flow element (LFE) of greater precision and accuracy than the orifice meter, where the value of k is given by equation 11.

$$k = \frac{Q_{LFE}}{5.976 * (D_0)^2 * \sqrt{\frac{\Delta P_c}{\rho_c}}}$$
[11],

where Q_{LFE} is the flow given by the LFE (ft³*min⁻¹), ρ_c is the density of the air during calibration (lbs*ft⁻³), and ΔP_c is the pressure drop across the orifice meter during calibration in inches of water. In the low volume example, the reading from a mass flow meter ($Q_{massflowmeter}$) is used in lieu of Q_{LFE} in equation 11 (to determine the k value). The density of the air during calibration, ρ_c , is calculated using the same equation as ρ_a , (refer to equation 10).

Results and Discussion

Sensitivity Coefficient Determination

In order to evaluate the effect of each primary measurement on the final concentration measurement, the sensitivity must be calculated with respect to each of these primary measurements. The sensitivity coefficient for each element of gravimetric sampling system is based on equation 5. In order to determine the sensitivity coefficients, the systematic uncertainty of each instrument is necessary. Table 1 specifies the instruments used for each measurement as well as the related systematic uncertainty as provided in the manufacturer's specifications. These uncertainty values are assumed to be at a 95% confidence interval (2 standard deviations from the mean, also referred to as 20:1 odds). Literature identifies this as a Type B analysis in which the evaluation of systematic uncertainty is based upon scientific judgment and manufacturers' specifications (NIST, 1994).

With this systematic uncertainty information, the sensitivity coefficient for each variable in equations 6-11 is determined using partial differential equations (as described by equation 5). These partial differentials can be found in Appendix A.

Sensitivity & Uncertainty Analysis

To determine the most sensitive input parameters with respect to the output particulate matter concentration, a sensitivity analysis must be performed on the uncorrelated primary measurements (Yegnan et al, 2002). The information obtained from the sensitivity analysis is used to obtain the uncertainty in the particulate matter concentration calculation. Additionally, this information helps the experimenter identify the most influential sources of uncertainty. This proves to be important when the amount of uncertainty in the final computation needs to be reduced by identifying these influential sources of uncertainty.

This analysis evaluates the PM_{10} concentrations in four situations: the high volume sampling technique (Q ~ 50 cfm, which is the midpoint of the U.S. EPA defined appropriate operating flow rates; Q ~ 39 cfm and Q ~ 60 cfm, which are the upper and lower limit flow rates as defined by the U.S. EPA) and low volume sampling technique (Q ~ 0.6 cfm ~ 1 m³/min) used by the Texas A&M Center for Agricultural Air Quality Engineering & Science (CAAQES). It is important to note that the sampling instrumentation used by CAAQES has less uncertainty and variability associated with each piece of instrumentation than the approved EPA sampling instrumentation.

Each portion of Table 2 is a summary of the sensitivity of each independent parameter contributing to the final particulate matter concentration. This information is derived from a model in Microsoft Excel as provided in Appendix B. Using the process defined in the methods section, the sensitivities of each of the parameters are calculated based on equation 5. The uncertainty of each secondary measurement (the propagation of the primary measurements) is determined by the process as described in equations 3 and 4. These secondary uncertainties include not only the uncertainty in the concentration measurement (ω_{C}) but also the uncertainty in the mass on the filter (ω_{W}), the volume of air (ω_{V}), the volumetric flow rate of air (ω_{Q}), the density of the air during the sampling period (ω_{pa}), the density of the air during the sampling period (ω_{pa}). Ultimately, the model calculates the amount of impact of each parameter on the total uncertainty in the final uncertainty will yield a value much larger than 100%. However, if the parameters representing the primary measurements are summed (ΔP_{a} , T_a, P_a, RH_a, P_{sata}, Q_{LFE}, D₀, ΔP_{c} , T_c, P_c, RH_c, P_{satc}), then the Percentage of Total Uncertainty results in 100% of the total uncertainty.

The following scenario evaluations are included in Tables 2 and 3 (with the calculations included in Figures 4-7):

- TAMU Gravimetric Sampling $Q \sim 0.6$ cfm (1 m³/hr)
- TAMU Gravimetric Sampling Q ~ 39 cfm
- TAMU Gravimetric Sampling $Q \sim 50$ cfm
- TAMU Gravimetric Sampling $Q \sim 60$ cfm

Table 3 displays the overall concentration uncertainty for each of the scenarios, while Table 2 breaks down the uncertainty into the contribution of each measurement to the total uncertainty.

In all four scenarios, it's important to note that the leading contributor to the uncertainty in the final concentration calculation is the pressure drop across the orifice meter. If we are to seek a higher degree of certainty in our final concentration calculation, then the optimal decision would be to decrease the uncertainty in the pressure drop across the orifice meter measurement.

Conclusions

A measurement of a variable can only provide a deterministic estimate of the quantity being measured; thus, it can only be considered complete when supplemented by a quantitative statement of the inaccuracies surrounding the measurement. Thus, it is extremely important that all scientific measurements and calculations include a statement of uncertainty. This analysis uses a first order Taylor Series approximation to determine the total uncertainty surrounding the PM concentration for four gravimetric sampling scenarios.

In addition to determining the total uncertainty, the most critical measurements in gravimetric sampling of PM are identified using a sensitivity analysis. In evaluating the uncertainty surrounding each measurement and the impact on the total uncertainty in the final calculation, it is notable that the pressure drop across the orifice meter during the test as well as during calibration accounts for approximately 60% - 80% of the total uncertainty in each of the four examples. With this knowledge, the experimenter has identified the optimal part of the measurement process to focus on to effectively reduce the total uncertainty in the experiment, if desired.

Thus, this analysis has provided a systematic method of determining which instruments in the process need to be improved on in terms of reducing overall uncertainty by using a Taylor Series approximation approach based off of the pioneering research by Kline and McClintock in 1953. An uncertainty analysis should be included in every single experimental procedure!

References

- American National Standards Institute/American Society of Mechanical Engineers (ANSI/ASME). Test Uncertainty, Performance Test Code 19.1 – 1998. New York, NY: ASME.
- Coleman, Hugh W., and W. Glenn Steele. 1999. Experimentation and Uncertainty Analysis for Engineers. 2nd ed. New York, NY: John Wiley & Sons.
- Cooper, C. David, and Alley, F.C. 1994. *Air Pollution Control: A Design Approach. 2nd ed.* Prospect Heights, Illinois: Waveland Press, Inc.
- Devore, Jay L. 1995. *Probability and Statistics for Engineering and the Sciences.* 4th ed. Pacific Grove, CA: Brooks/Cole.
- The Engineering Toolbox. 2003. Saturated Steam Table in SI Units. http://www.engineeringtoolbox.com/28 101.html>. Last accessed December 18, 2003.
- Holman, J.P. 2001. Experimental Methods for Engineers. 7th ed. Boston, MA: McGraw Hill.
- International Standards Organization (ISO). 1995. Guide to the Expression of Uncertainty in Measurement. Geneva: ISO.
- Kline, S.J., and McClintock, F.A. 1953. Describing Uncertainties in Single-Sample Experiments. *Mechanical Engineering*. 75: 3-8.
- Kline, S.J. 1985. The Purposes of Uncertainty Analysis. Journal of Fluids Engineering. 107: 153-161.
- National Institute of Standards and Technology (NIST). 1994. *Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Results*. NIST Technical Note 1297. United States Department of Commerce. Washington, DC: US GPO.
- Sorenson, J.W., and Parnell, Calvin B. 1991. *Agricultural Processing Technology*. College Station, TX: Texas A&M University.
- U.S. EPA. 1995. *Compilation of Air Pollutant Emission Factors, AP-42, 5th Edition*, Volume I: Stationary Point and Area Sources. Research Triangle Park, NC: U.S. GPO.
- USEPA. 1999. 40 CFR Part 50. National Primary and Secondary Ambient Air Quality Standards. Research Triangle Park, NC: U.S. GPO.
- USEPA. 1999. 40 CFR Part 70. National State Operating Permit Programs. Research Triangle Park, NC: U.S. GPO.
- Wang, L. 2000. *A New Engineering Approach to Cyclone Design for Cotton Gins.* M. S. thesis, Agricultural Engineering Dept., Texas A&M University, College Station.
- Yegnan, A., D.G. Williamson, A.J. Graettinger. 2002. Uncertainty Analysis in Air Dispersion Modeling. Environmental Modeling & Software. 17: 639-649.

<u>Tables</u>

Table 1. Instrument Specification

Parameter	Instrument	Systematic Uncertainty
W/W/	Sartortius SC2 (low volume)	1 * 10 ⁻⁷ g
$\mathbf{W}_{i}, \mathbf{W}_{f}$	Mettler Toledo AG balance (high volume)	$2 * 10^{-4} g$
Θ (Time)	HOBO data logger	0.20 min
<u>AD</u>	Omega PX274 Pressure Transducer	0.075
ΔP_a	+ HOBO cord	0.1 mA + 3 %
Do	End Mill Specs	0.025 in
Ta	HOBO Weather Station Temperature/RH Smart Sensor	0.8 °F
Pa	HOBO Weather Station Barometric Pressure Smart Sensor	1 %
RHa	HOBO Weather Station Temperature/RH Smart Sensor	3 %
P _{sata}	Steam Tables	0.0001 psia
Q _{massflowmeter}	Aalborg GFC17 Mass Flowmeter	1.5 % FS
Q _{LFE}	Meriam Instruments Model 50MC2-2	0.344 cfm
ΔP_{c}	Digital Manometer – Dwyer Series 475 Mark III	0.5 % FS
T _c	Davis Perception II	1 °F
P _c	Davis Perception II	1 %
RH _c	Davis Perception II	5%
P _{satc}	Steam Tables	0.0001 psia

	TAMU High Volume					Г	AMU Low	Volume		EPA Lower High Volu	Limit Ime	EPA Upper Limit High Volume			
		C	Nominal Value	Uncertainty	% of Total Uncertainty	Nominal Value	Uncertainty	% of Total Uncertainty	Nominal Value	Uncertainty	% of Total Uncertainty	Nominal Value	Uncertainty	% of Total Uncertainty	
ass	W _f	G	9.1	2.00E-04	1.663%	10.3013	1.00E-07	0.0016%	9.786	2.00E-04	1.431%	9.832	2.00E-04	1.655%	
W	W _i	G	9.7	2.00E-04	1.663%	10.3	1.00E-07	0.0016%	9.7	2.00E-04	1.431%	9.7	2.00E-04	1.655%	
ame	θ(Time)	Min	180	0.20000	0.016%	180	0.20000	0.0088%	180	0.20000	0.0084%	180	0.20000	0.023%	
Volt	Q	Cfm	50.00	4.33220	96.66%	0.589	0.06977	99.99%	39.00	4.66991	97.13%	60.00	4.34247	96.67%	
	ΔP_a	in of H ₂ O	1.5493	0.2260	68.50%	1.074	0.2118	69.2%	0.9426	0.2078	82.31%	2.2310	0.2465	56.30%	
ð	ρ_a	Lbs/ft ³	0.07213	0.000736	0.335%	0.07213	0.000736	0.185%	0.07213	0.000736	0.176%	0.07213	0.000736	0.480%	
	k		0.80235	0.037300	27.83%	0.72620	0.04761	30.62%	0.80235	0.03730	14.64%	0.80235	0.037300	39.88%	
	Ta	° F	85	0.8	0.0069%	85	0.8	0.004%	85	0.8	0.0036%	85	0.8	0.0099%	
o.	Pa	Psia	14.676	0.14676	0.3277%	14.676	0.14676	0.181%	14.676	0.14676	0.172%	14.676	0.14676	0.4697%	
	RH _a		0.58	0.0174	0.0002%	0.58	0.0174	0.0001%	0.58	0.0174	0.0001%	0.58	0.0174	0.0003%	
	P _{sata}	Psia	0.5961	0.0001	0.000%	0.5961	0.0001	0.000%	0.5961	0.0001	0.000%	0.5961	0.0001	0.000%	
	Q _{LFE} / Q _{massflow}	Cfm	50	0.344	0.6095%	0.5	0.00795	1.801%	50	0.344	0.321%	50	0.344	0.8735%	
X	ΔP_c	in of H ₂ O	1.6	0.1	12.57%	0.8	0.1	27.82%	1.6	0.1	6.616%	1.6	0.1	18.022%	
	Do	inches	1.5	0.025	14.31%	0.1875	0.001	0.810%	1.5	0.025	7.527%	1.5	0.025	20.505%	
	ρ _c	Lbs/ft ³	0.07449	0.000762	0.337%	0.07449	0.000762	0.186%	0.07449	0.000762	0.177%	0.07449	0.000762	0.4824%	
	T _c	° F	70	1	0.0115%	70	1	0.0063%	70	1	0.006%	70	1	0.0164%	
~	P _c	Psia	14.676	0.14676	0.325%	14.676	0.14676	0.1797%	14.676	0.14676	0.171%	14.676	0.14676	0.4657%	
9	RH _c		0.5	0.025	0.0002%	0.5	0.025	0.0001%	0.5	0.025	0.0001%	0.5	0.025	0.0003%	
	P _{satc}	psia	0.36292	0.0001	0.000%	0.36292	0.0001	0.000%	0.36292	0.0001	0.000%	0.36292	0.0001	0.000%	

 Table 2. Gravimetric Sampler Sensitivity Analysis for Uncertainty Propagation

Table 3. Total Uncertainty for Gravimetric Sampling Under Normal Conditions

	Concentration (µg/m ³)	Uncertainty (µg/m ³)	Uncertainty (%)
$TAMU - 1 m^3/hr$	69.31	8.21	11.85
TAMU - 39 cfm	69.22	8.41	12.15
TAMU - 50 cfm	69.06	6.09	8.81
TAMU – 60 cfm	69.06	5.08	7.36

Figures

Figure 1. Illustration of Total Error, $\boldsymbol{\delta}$

Figure 2. Determining the systematic uncertainty for an experiment (from Coleman & Steele, 1999)

$$C = \frac{W}{V} \qquad (6)$$

$$\longrightarrow W = 0.16* (W_{f} - W_{i}) \qquad (7)$$

$$\longrightarrow V = Q * \Theta \qquad (8)$$

$$\longrightarrow Q = 5.976* k* (D_{0})^{2}* \sqrt{\frac{\Delta P_{a}}{\rho_{a}}} \qquad (9)$$

$$\longrightarrow P_{a} = \left[\frac{P_{a} - RH * P_{i}}{0.37* (460 + T)}\right] + \left[\frac{RH * P_{i}}{0.596* (460 + T)}\right] \qquad (10)$$

$$\longrightarrow k = \frac{Q_{HW}}{5.976* (D_{0})^{2}* \sqrt{\frac{\Delta P_{c}}{\rho_{c}}}} \qquad (11)$$

$$\longrightarrow \rho_{c} = \left[\frac{P_{c} - RH * P_{i}}{0.37* (460 + T)}\right] + \left[\frac{RH * P_{i}}{0.596* (460 + T)}\right] \qquad (10)$$

Figure 3. Breakdown of Equations

C = W/V	69.06 µg/r	m ²										
ω _c	6.0862E-0	8 g/m ³	6.09 µg/m³	0	R	8.81%						
				0								
							% of TOTA	AL Uncerta	ainty			
	ω _w	0.00028284	a		8C/8W	0.003923	85 3.325	3%				
	øγ	22.0831655	m [*]		8C/8V	-2.7098E	07 96.6743	7%				
		$VV = VV_r - VV_i$	0.0176 g									
		ωw	0.000282843 g									- T A
				2.00E	04.4		SWASIAL.		1	50 0000%	1 6826%	sinty
			www.	2.00E	04 g 04 g		EWEN		- 4	50.0000%	1.6626%	
				2.002			omon			00.00007	1.00207	
		V = QO	8999.996854 ft ³		254.851	5 m ³						
		m ₂₂	779 8596285 ft		22 0831	7 m ³						
									5	of Partial Unce	rtaint;% of Total Uncerta	ainty
			0.e	(0.2 min		8V/80	49.99	999825	0.0164%	0.0159%	
			80	4.3321972	88 cfm		8V/8Q		180	99.9836%	96.6588%	
Q = 5.976 * k	* D ₀ ² * sqrt(∆	/Pa/ρa)	(Uncertainty in Do	is already	accounted f	or in the calit	pration of k)					
	49,9999	8 cfm	(assume F _A = 1)									
ωq	4.33219	7 cfm										
							% of Partial U	Incertaint	% of To	tal Uncertainty		
	ω _{Do}	0	(accounted for in	()	δQ/δDo	66.6666	0.0000%		0.00	00%		
	ω _{ΔPa}	0.22601105	in of H ₂ O		δQ/δ∆Pa	16.136	70.8658%		68.49	80%		
	ω _k	0.03729956			δ Q /δk	62.3173	28.7878%		27.82	59%		
	ω _{pa}	0.00073572	lbs/ft ³		δQ/δρa	-346.599	0.3465%		0.33	49%		
		k = Qlfe / (5.9	76 * D₀ ² * sqrt(∆P₀/)	o.))								
			0.80234559									
		ω _k	0.03729956									
				0.244	atas		sk/sOlfo	0.01605	% of Pa	rtial Uncertain 19	6 of Total Uncertainty	
			CO QIFE	0.344	cim		sk/sDo	1.06070	2.19	02%	14.20610/	
			ω _{Do}	0.025	in in of U.O.		Sk/SADc	-1.06979	51.41	30%	14.3061%	
			ωΔΡο	0.1	In of H ₂ O		CRIOLAP C	-0.25073	45.18	72%	12.5/3/%	
			ω _{ρc} 0	00076168	ibs/ft		ok/opc	5.3857	1.20	95%	0.3366%	
					* B	37 (AGO + T		1/05		T 333		
			Po -	- ((Fo - (Rr	sato))/(0.37 (400 + 1	_))) + ((RH₀ - F	sato) / (0.55	90 (400 +	· <i>o</i> ///		
					0.0744884	48 IDS/π Ibs/# ³						
			ω _{pt}		0.0007610	56 IDS/IT					of Destin Uncertainty	% of Total Uncertainty
					0	0.025			δoc/δRH	c 0.0007	o of Partial Uncertainty	% of lotal Uncertainty
					WRHC	0.025	neia		δoc/δPe	-0.0007	0.0001%	0.0002%
					Op.	0.0001	psia		δoc/δPc	0.0051	96 5422%	0.3249%
					wрс Ют.	0.14070	° F		δoc/δTc	-0.00014	3 4047%	0.0115%
					w1c	'			*P*-	-0.00014	3.4047 /6	0.011376
		$\rho_{a} = ((P_{a} - (R)$	la * P _{sata}))) / (0.37 (460 + T _a)) ·	• ((RH ₃ * P.,	na) / (0.596 (4	460 + T _a)))					
			0.07212942 lbs	ft ³			-777					
		0	0.00073572 lbs	ft ³	% of Total I	Incertainty						
		30 pa	3.00013312 100			shoertainty			% of Pa	rtial Uncertain®	of Total Uncertainty	
			(O PL)	0.0174			δρa/δRHa	-0.00112	0.07	03%	0.0002%	
			@ Psata	0.0001	psia		δpa/δPsata	-0.00109	0.00	00%	0.0000%	
			@Pa	0.14676	psia		δρα/δΡα	0.00496	97.85	87%	0.3277%	
			Фть	0.8	°F		δρα/δΤα	-0.00013	2.07	11%	0.0069%	

Figure 4. TAMU - 50 cfm - Uncertainty Analysis

C = W/V	69.31 µg/m	3											
00c	8.2124E-06	g/m ³	8.21 μg/m ³		OR	11.85%							
							-						
					0.010141		% of TOTAL U	Incertainty	r				
	ω ^M	1.41421E-07	9		OCIOW	0.333205773	0.0033%						
	ωv	0.355610452	m-		8C/8V	-2.3093E-05	99.9967%						
		W = W _ W	0.000000										
		vv = vv _r - vv _i	4 414015 07										
		ωw	1.414216407	,					% 0	of Partial	Uncertaint	% of Total Uncertainty	<i>v</i>
			B.4	1.00E-07	a		8W/8W,		1	50.0000%	Silvertaint	0.0016%	,
			e	1.00E-07	a		8W/8W		-1	50.0000%	-	0.0016%	
					•								
		V = Q⊖	105.9845585 (t ³	3.001148	m ³							
		®v.	12.5582646	t ³	0.35561	m ³							
									% 0	of Partial	Uncertaint	% of Total Uncertainty	/
				0.2	min		8V/8 0	0.5888031	03	0.0088%	2	0.0088%	
	_		80 C	0.069765	cfm		8V/8Q	1	80	99.9912%	2	99.9879%	
Q = 5.976 * k	C* D ₀ ² * sqrt(A)	Pa/pa)	(Uncertainty in D	o is alread	y accounts	ed for in the ca	libration of k)						
	49.99998	cfm	(assume F _A = 1)										
80g	4.332197	cfm											
	<i>.</i>	,) (accounted for in	м	80/8Do	66 666	% of Partial	Uncertaint	% of 1	rotal Und	ertainty		
	w Do	0.22601105	s in of H-O	i k)	8Q/8AP2	16.000	0.0000%		69	40900			
	w <u>A</u> ra	0.03729956	2		8Q/8k	62.317	28 78 78 78 78 78 78 78 78 78 78 78 78 78		27 1	82504			
	w _k	0.000725500	, lbs/₩ ³		80/848	348.50	0.04050			22400/			
	wpa	0.00073572			0-000	-340.05	0.3405%		0.	3345%			
		k = Qife / (5.9	976 * D ₂ ² * sart(AP,	(o.))									
			0.80234559										
		ω _k	0.03729956										
									% of F	Partial Un	certain!%	of Total Uncertainty	
			(C) C	0.34	4 cfm		δk/δQlfe	0.01605	2.	1902%		0.6095%	
			00 _{Do}	0.025	5 in		δk/δDo	-1.06979	51.4	4130%		14.3061%	
			(0 APc	0.1	1 in of H ₂ C	2	δk/δ∆Pc	-0.25073	45.1	1872%		12.5737%	
			00pc	0.0007616	g ibs/ft°		δk/δpc	5.3857	1.3	2095%		0.3366%	
			ρε	= ((Pc - (R	H _c * P _{sate}))) / (0.37 (460 +	T _c))) + ((RH _c +)	P _{satc}) / (0.59	96 (460) + T _c)))			
					0.0744	48848 lbs/ft ³							
			6	pc	0.0007	76168 lbs/ft*							
					_		-		8 au 18 8		%	of Partial Uncertainty	% of Total Uncertainty
					CO RHc	0.02			Soc/SE	RHC Reato	-0.0007	0.0531%	0.0002%
					00 Paale	0.000	/1 psia		Sec/SE	-saic 🚽	0.00097	0.0000%	0.0000%
					ω _{Pc}	0.1467	topsia 1 ∘ ⊑		8oc/81	с Гс и	0.0051	3.4047%	0.0115%
					W TE		1 F		op-101	-	0.00014	3.4547.56	0.011018
		$\rho_n = ((P_n - (R_n - R_n)))$	H _a * P _{soto}))) / (0.37	(460 + T _a))) + ((RH _a *	P _{sata}) / (0.596	(460 + T _a)))						
			0.07212942 lb	e/ft ³									
		00 m	0.00073572	s/ft ³	% of Tol	tal Uncertainty							
									% of F	Partial Un	certain!%	of Total Uncertainty	
			© RHa	0.0174	4		δpa/δRHa	-0.00112	0.0	0703%		0.0002%	
			@Posta	0.000	1 psia		δpa/δPsata	-0.00109	0.0	0000%		0.0000%	
			@ _{Pa}	0.1467	6 psia		õpa/õPa	0.00496	97.	8587%		0.3277%	
			Фта	0.4	8°F		8pa/8Ta	-0.00013	2.0	0711%		0.0069%	

Figure 5. TAMU – $1 \text{ m}^3/\text{hr}$ – Uncertainty Analysis

C = W/V ω _c	69.23 8.418	µg/m ³ :-06 g/m ³	8.41 μg/m	3	OR	12.15%							
							% of TOTAL U	ncertainty					
	ωw	0.000282	84 g		8C/8W	0.00503058	2.8623%						
	ωv	23.80371	35 m		00/04	-3.482E-07	97.1377%						
		W = W ₁ - V	V _i 0.013	376 g									
		ωw	0.0002828	43 g									
			m -4	2 00E-04	~		SMISM.		% of Partial U 50 0000%	ncertain1%	of Total Uncertainty 1 4312%		
			00wi	2.00E-04	9		8W/8W	1	50.0000%		1.4312%		
		V = Q⊖	7020.0053	511 ft ²	198.784	m ³							
		ωv	840.62020	//3 **	23.8037				% of Partial U	ncertain1%	of Total Uncertainty		
			ωe	0.2	min		δV/δΘ	39.0000295	0.0086%		0.0084%		
			ωq	4.669911	cfm		δV/δQ	180	99.9914%		97.1293%		
Q = 5.976	* k * D _o ² *	sqrt(∆Pa/pa)	(uncertainty in	n D _o is already	accounte	ed for in the c	alibration of k)						
	39	cfm	(assume F _A =	1)									
00	4.66991	cfm					N of Double	Uncertain	W of Tabal II				
	©ne	0	(accounted fo	r in k)	8Q/8Do		52 0.0000%	oncertain	0.0000%	ncertainty			
	(DADa	0.20780962	in of H ₂ O		δQ/δ∆Ρε	20.687	2 84.7457%		82.3129%				
	m _k	0.03729956	-		δQ/δk	48.607	15.0729%		14.6402%				
	ω _{pa}	0.00073572	lbs/ft ³		δQ/δρα	-270.3	0.1814%		0.1762%				
		k = Qlfe / (5.9	76 * D ₆ * * sqrt($\Delta P_e (\rho_e)$									
		n .	0.80234559										
		w,							% of Partial	Uncertain	% of Total Uncertai	nty	
			CODIFE	0.344	cfm		δk/δQife	0.01605	2.1902%		0.3207%		
			ω _{De}	0.025	in		ôk/ôDo	-1.0698	51.4130%		7.5270%		
			$\omega_{\Delta Pe}$	0.1	in of H ₂ C	2	δk/δ∆Pc	-0.2507	45.1872%		6.6155%		
			ω _{pc}	0.00076168	lbs/ft ³		δk/δρ¢	5.3857	1.2095%		0.1771%		
				o. = ((P (R)	H * P)	0//0.37/460	+ T.))) + //RH.	*P)/(0	598 (460 + T				
				P6 - (() 6 () 4	0.0744	9949 lhe/ft ³	· · · · · · · · · · · · · · · · · · ·	' salc/ / \G		c///			
				Ø	0.0007	6168 lbs/ft ³							
				pc						4	% of Partial Uncerta	ainty% of Total Uncertai	nt
					ORHC	0.02	25		δρc/δRHc	-0.0007	0.0531%	0.0001%	
					Operate	0.000)1 psia		δρc/δPsatc	-0.001	0.0000%	0.0000%	
					00pc	0.1467	/6 psia		8pc/8Pc	0.0051	96.5422%	0.1710%	
					ωτε		1.16		арылатс	-0.0001	3.404776	0.0060%	
		$p_{a} = ((P_{a} - (RH)))$	H _e * P _{este}))) / (0	.37 (460 + T _a))) + ((RH,	* P _{sots}) / (0.5	96 (460 + T _a)))						
			0.07212942	lbs/ft ³									
		00 _{pa}	0.00073572	lbs/ft ³	% of Tot	tal Uncertaint	y						
									% of Partial	Uncertain	% of Total Uncertal	nty	
			CO RHa	0.0174	male		δρa/δRHa	-0.0011	0.0703%		0.0001%		
			00 p sata	0.0001	psia		opa/oPsata Soa/SPa	-0.0011	0.0000%		0.0000%		
			ω _{Pa} Юта	0.146/6	°F		δρα/δΤα	-0.0001	2.0711%		0.0036%		
			WTa .								and the second second second		

Figure 6. TAMU – 39 cfm – Uncertainty Analysis

C = W/V	69.0 6	µg/m³	_									
ωc	5.0836	3E-06 9/m²	5.08	µg/m²	OR	7.36%						
							% of TOTAL U	ncertainty				
	ωw	0.000282	2843 g		8C/8W	0.003269877	3.3099%					
	ωv	22.1363	1212 m ³		8C/8V	-2.2582E-07	96.6901%					
		W = W	w.	0.02112.0								
			0.00	0.02112.g								
			0.00	0202040 g					% of Partia	I Uncertainty	% of Total Uncertainty	,
			ω _{wf}	2.00E	-04 g		8W/8W,		1 50.0000	y%	1.6549%	
			co _{vel}	2.00E	-04 g		8W/8W		-1 50.0000	2%	1.6549%	
		V = 00	107	20 00001 0 ³	305 8210	m ³						
		0 - QS	781	7364849 ft ³	22 13831	m ³						
									% of Partia	I Uncertainty	% of Total Uncertainty	1
			ωe		0.2 min		8V/80	59.999994	48 0.0236	5%	0.0228%	
			ωq	4.3424	588 cfm		8V/8Q	1	80 99.976	4%	96.6673%	
Q = 5.976	* k * D _o ² * s	iqrt(∆Pa/ρa)	(uncertaint	y in D _o is already	accounted fo	r in the calibra	tion of k)					
	59.99999	cím	(assume F	(= 1)								
e و د	4.342469	cfm										
	-) (accounted	for in ki	80/8Do	70 00000	% of Partial L	ncertainty	% of Total Un	certainty		
	00 _{Do}	0.04040040	in of H O	nor in K)	20/24Pa	/9.99999	0.0000%		0.0000%			
	ω _{ΔPa}	0.246462198	sin or ngo		80/8k	13,94059	55.2449%		20.3036%			
	w _k	0.03729956	l Elbeill ³		50/5ee	/4./00/4	41.2503%		39.0030%			
	ω _ρ α	0.000735718	Dinerit		owopa	-415.919	0.4900%		0.4000%			
		k = Qife / (5.9	76 * D ₂ ² * so	rt((P_(e_))								
			0.802345	587								
		e,	0.037299	561								
									% of Partial U	Incertaint %	of Total Uncertainty	
			(CON)	0.34	l4 cfm		δk/δQife	0.016047	2.1902%		0.8735%	
			© Do	0.02	25 in		δk/δDo	-1.06979	51.4130%		20.5053%	
			ω _{ΔPc}	0	1 in of H ₂ O		δk/δ∆Pc	-0.25073	45.1872%		18.0222%	
			ω _{pc}	0.00076163	78 lbs/ft ³		δk/δρC	5.385702	1.2095%		0.4824%	
				$\rho_c = \langle (P_c - (P_c - P_c)) \rangle$	$H_c \cap P_{autc})) / ($	0.37 (460 + 1,))) + ((RH _c · P,	_{atc}) / (0.596	5 (460 + 1 ₂)))			
					0.074488	482 lbs/ft*						
				ω _{pc}	0.000761	578 IDS/IC					of Partial Uncertainty	. V. of Total Upgertainty
					0	0.025			δoc/δRHc	-0.0007	0.0531%	0.0003%
					Man .	0.023	neia		8oc/8Psatc	-0.00097	0.0000%	0.0000%
					Open Contract	0.14676	psia		8pc/8Pc	0.005099	96.5422%	0.4657%
					ω _{Tc}	1	• F		δρε/δΤε	-0.00014	3.4047%	0.0164%
		$\rho_a = \langle \langle P_a \cdot \langle R \rangle$	H _a * P _{sata}))) /	(0.37 (460 + T _n))	+ ((RH _a * P _a	_{ata}) / (0.596 (46	90 + T _a)))					
			0.072129	422 lbs/ft ³								
		0.p.	0.000735	715 lbs/ft ³	% of Total	Uncertainty						
									% of Partial L	Incertaint %	of Total Uncertainty	
			© RHa	0.017	4		δρa/δRHa	-0.00112	0.0703%		0.0003%	
			© Paula	0.000	n psia		opa/oPsata Sec/SDo	-0.00109	0.0000%		0.0000%	
			ωp _a	0.1467	opsia 8 * F		δρα/δΤα	0.004959	97.8587%		0.4697%	
			WT a	u	.e r		sepred for the	-0.00013	2.071196		0.003376	

Figure 7. TAMU - 60 cfm - Uncertainty Analysis

<u>Appendix A</u> <u>Sensitivity Coefficient Determination</u>

$$\begin{split} C &= \frac{W}{V} \text{ (refer to equation 6)} \\ &= \frac{\delta C}{\delta W} = \frac{1}{V} \\ &= \frac{\delta C}{\delta V} = -\frac{W}{V^2} \\ W &= W_f - W_i \text{ (refer to equation 7)} \\ &= \frac{\delta W}{\delta W_f} = 1 \\ &= \frac{\delta W}{\delta W_f} = 1 \\ V &= Q * \Theta \text{ (refer to equation 8)} \\ &= \frac{\delta V}{\delta W_i} = Q \\ Q &= 5.976 * k * (D_0)^2 * \sqrt{\frac{\Delta P_a}{\rho_a}} \text{ (refer to equation 9)} \\ &= \frac{\delta Q}{\delta A} = Q \\ Q &= 5.976 * (D_0)^2 * \sqrt{\frac{\Delta P_0}{\rho_a}} \\ &= \frac{\delta Q}{\delta D_0} = 11.952 * k * (D_0)^2 * \sqrt{\frac{\Delta P_0}{\rho_a}} \\ &= \frac{\delta Q}{\delta \Delta P_0} = 2.988 * k * (D_0)^2 * \sqrt{\frac{\Delta P_0}{\rho_a}} \\ &= \frac{\delta Q}{\delta \Delta P_0} = -2.988 * k * (D_0)^2 * \sqrt{\frac{\Delta P_0}{\rho_a}} \\ &= \frac{\delta Q}{\delta Q_a} = -2.988 * k * (D_0)^2 * \sqrt{\frac{\Delta P_0}{\rho_a}} \\ &= \frac{\delta Q}{\delta A R_a} = -2.988 * k * (D_0)^2 * \sqrt{\frac{\Delta P_0}{\rho_a}} \\ &= \frac{\delta Q}{\delta R H_a} = \frac{P_{sa}}{460 + T_a} * \left[\frac{1}{0.596} - \frac{1}{0.37}\right] \\ &= \frac{\delta p_a}{\delta P_a} = \frac{R H_a}{460 + T_a} * \left[\frac{1}{0.596} - \frac{1}{0.37}\right] \\ &= \frac{\delta p_a}{\delta P_a} = \frac{1}{0.37 * (460 + T_a)} \end{split}$$

$$\frac{\delta \rho_{a}}{\delta T_{a}} = \frac{1}{(460 + T_{a})^{2}} * \left[\frac{-P_{a}}{0.37} + RH_{a} * P_{sa} * \left[\frac{1}{0.37} - \frac{1}{0.596} \right] \right]$$

$$k = \frac{Q_{LFE}}{5.976 * (D_{0})^{2} * \sqrt{\frac{\Delta P_{c}}{\rho_{c}}}} \quad \text{(refer to equation 11)}$$

$$\frac{\delta k}{\delta Q_{LFE}} = \frac{1}{5.976 * (D_{0})^{2} * \sqrt{\frac{\Delta P_{c}}{\rho_{c}}}}$$

$$\frac{\delta k}{\delta D_{0}} = \frac{-2 * Q_{LFE}}{5.976 * (D_{0})^{3} * \sqrt{\frac{\Delta P_{c}}{\rho_{c}}}}$$

$$\frac{\delta k}{\delta \Delta P_{c}} = \frac{-\frac{1/2}{2} * Q_{LFE}}{5.976 * (D_{0})^{2} * \sqrt{\frac{\Delta P_{c}^{3}}{\rho_{c}}}}$$

$$\frac{\delta k}{\delta \Delta P_{c}} = \frac{-\frac{1/2}{2} * Q_{LFE}}{5.976 * (D_{0})^{2} * \sqrt{\frac{\Delta P_{c}^{3}}{\rho_{c}}}}$$

$$\frac{\delta k}{\delta \Delta P_{c}} = \frac{\frac{1}{2} * Q_{LFE}}{5.976 * (D_{0})^{2} * \sqrt{\frac{\Delta P_{c}^{3}}{\rho_{c}}}}$$