

# Some Research Highlights: Cattle Feeding & Environmental Quality

# **Texas A&M AgriLife Research & Extension** Amarillo TX December 10, 2013

# Significant multi-year funding has included:

State & Federal

- USDA-NIFA, Air quality: Reducing Emissions from Cattle Feedlots & Dairies (TX & KS), 2002-13 (8years funding).
- TX A&M AgriLife Research—State Air Quality initiative, 1999-2015.
- USDA- ARS: DG research program,~2005-13
- TX A&M AgriLife: WDG/Cattle Feeding state initiative, 2007-15.
- USDOE-Golden: Bioenergy, cattle manure, 2006-2012.

# **USDA-NIFA Federal Air Quality Initiative (FAQI)**

#### • Objectives (4):

- A. Abatement measures & receptor impacts.
- B. Process-based emission models.
- C. Dispersion modeling, regulation & emission factors.
- D. Technology transfer to stakeholders.

#### <u>Research Partners:</u>

TX A&M AgriLife Research & Extension; KSU; WTAMU; USDA-ARS; UN-L Ext.

• Industry Partners: Stakeholder Advisory Committee

- TCFA, NCBA, KLA, TFB, USDA-NRCS, TCEQ, USEPA Reg. 6&7.

### Texas A&M AgriLife Research & Extension

#### • **Amarillo/Vernon faculty** has included:

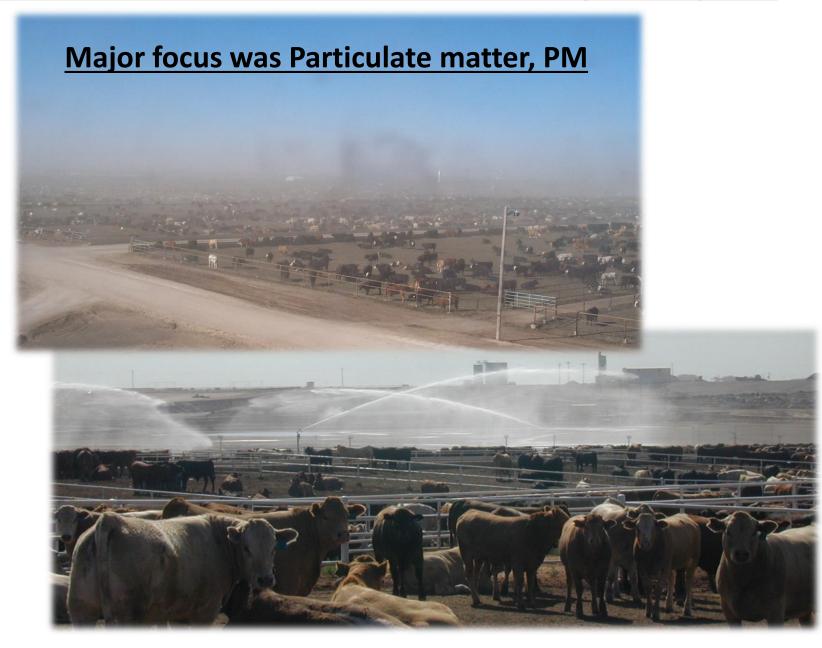
- Brent Auvermann
- Steve Amosson
- Mike Brown (WT & AgriLife
- Ken Casey
- Kay Ledbetter
- Jim McDonald (AgriLife & WT; now UN-L)
- Ted McCollum
- Seong Park (Vernon & AMA)
- Bill Pinchak (Vernon)
- Pablo Pinedo

#### <u>College Station faculty:</u>

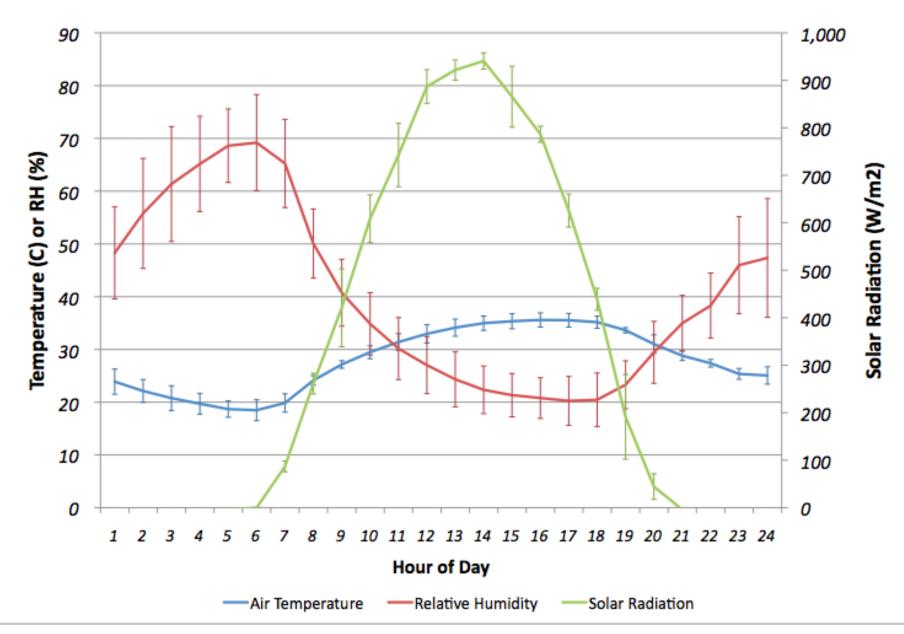
- Brock Faulkner
- Calvin Parnell
- Sergio Capareda
- Saqib Mukhtar.

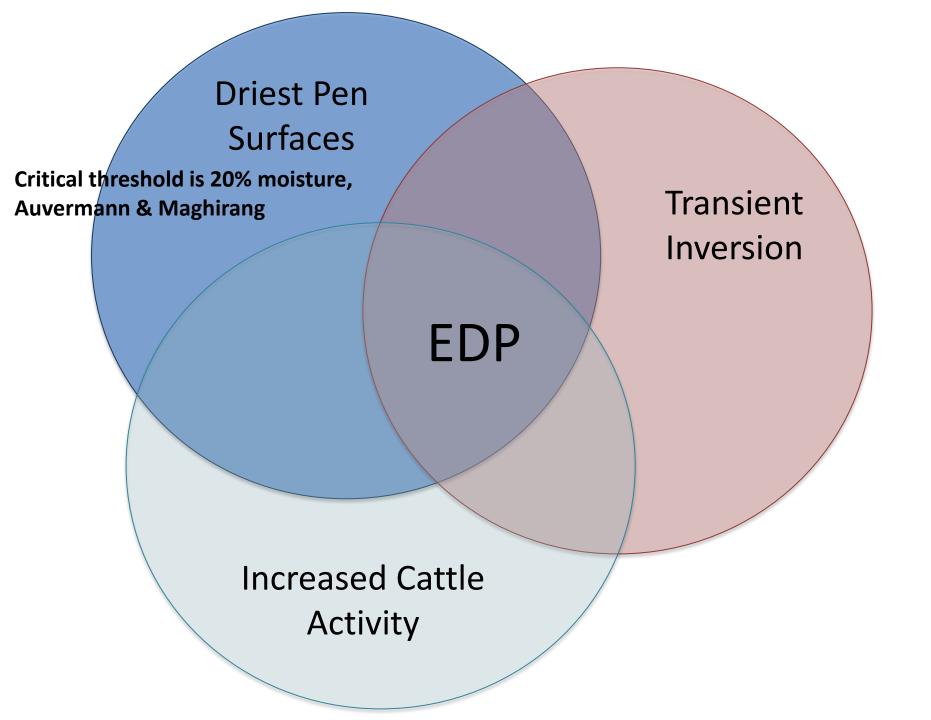
# **Approaches to Emission Sampling**

- Source-specific:
- Examples:
  - Flux chambers
  - Wind tunnels
- <u>Comment:</u>
  - Multiple, indiv. sources.
  - Semi-invasive;
  - Important for relative comparisons;
  - High precision;
  - Short-term comparisons.
  - Accuracy "depends", viz: equip., protocols, sampling intensity, etc.


- <u>Source-integrated:</u>
- <u>Examples</u>--
  - PM gravimetric samplers.
  - Open path lasers, TDLAS
  - Open path FTIR.
  - Calorimetry chambers.
- <u>Comment</u>:
  - Integrates across multiple sources.
  - Accounts for spatial & temporal variability.
  - Ambient air or open paths.
  - Non-invasive.
  - Seeks absolute values.

### **Common Emission Expressions**

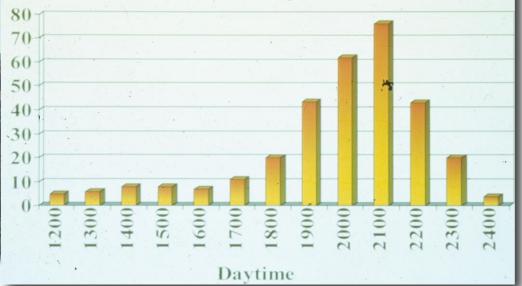

#### <u>Emission concentrations:</u>


- mass/volume (µg/m<sup>3</sup>)
- mass/mass, ppm or ppb.
- *With inverse dispersion modeling*, measured concentrations are used to produce calculated values for:
  - <u>Emission rate</u>, mass/time, μg/sec, or kg/day.
  - Emission flux rate, mass/area/time:  $\mu g/m^2/sec$ , or kg/m<sup>2</sup>/yr.
  - <u>Emission factor</u>, mass/time/unit of production: lbs/day/1,000 hd.

#### **Objective A. Abatement Measures & Receptor Impacts**

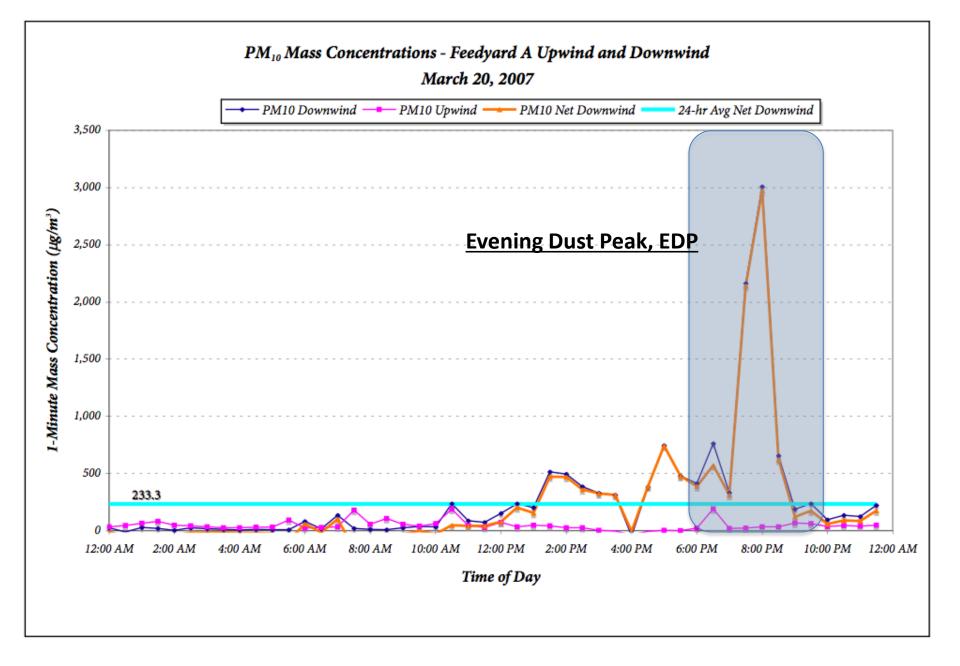


#### Temperature, RH, and Solar Radiation 11-15 JUL 2009









**Dust Generating Behaviors** 

agonistic behavior, bulling and locomotion)



<u>Conceptual model (Auvermann):</u> Emission Factor, EF (g/hd/d) = Pen Surface Dustiness, S (g/kJ) X Animal Activity, AA (kJ/hd/d)





### Abatement Measures: PM

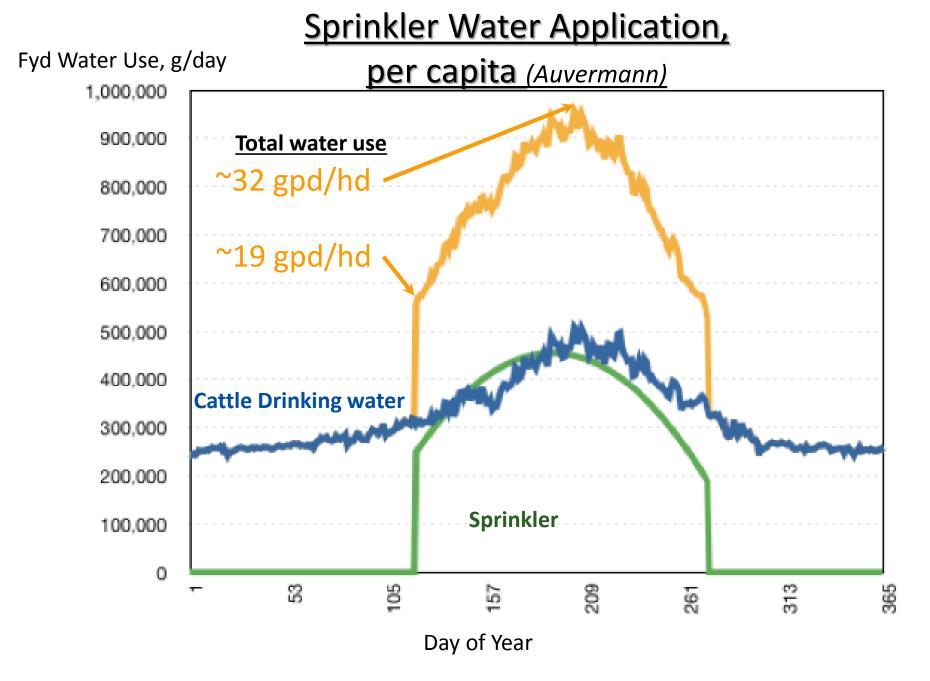
- **Solid-set sprinklers** (Auvermann & Maghirang)
  - 50-80% effectiveness
  - Cost/benefit ~ 0.75-1.00/lb PM<sub>10</sub>

#### Manure harvesting

Including increased frequency.

### Stocking density manipulation

- Reduces water requirements
- Extends rainfall effects
- Must preserve bunk space per head
- >50% effectiveness (not yet published)


Note: critical threshold is 20% surface moisture (Auvermann & Maghirang)

#### **Obj. A-- Abatement Measures & Receptor Impacts**

- Solid-set sprinklers:
- PM10 control efficiency (24-hr values): (Maghirang, KSU)
- <u>Sprinkled feedyard (KS1)</u>:
  - PM10 concentration reductions: mean = 53% (range = 32-80%).
  - PM10 emission rates 24-hr reduced: mean = 49% (range=12-92%)
  - PM10 emission rates for EDP reduced: mean = 61% (range = 21-93%).
  - Sprinkler effect lasted one-day. Improved w/higher application.
- <u>Rainfall</u> effect for sprinkled vs. unsprinkled (KS2) feedyards:
  - means --KS1 = 77%; KS2 = 76%;
  - range = 60 ~100% both feedyards.
  - Rainfall effect lasted 3-7 days, per amount & intensity.
- <u>Cost/benefit</u> of sprinkling ~ \$0.75-1.00/lb PM<sub>10</sub>

(Brent Auvermann & Seong Park)






### Water Application

#### **Suggestions:**

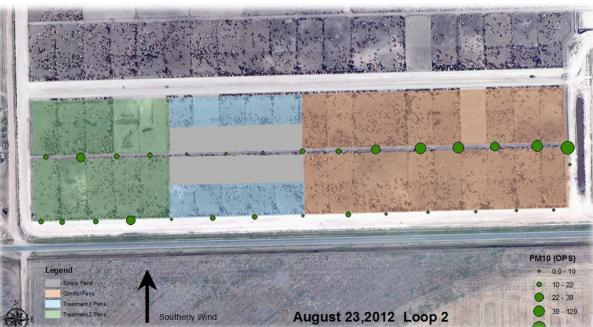
- Don't rely on water ALONE if uncompacted manure is deeper than 1/2"-1"
- Longer sprinkler sets rather than more numerous, IF POSSIBLE
- The last set of the day should be the ٠ downwind set, if layout permits.





#### **Obj. A. Abatement Measures & Receptor Impacts**

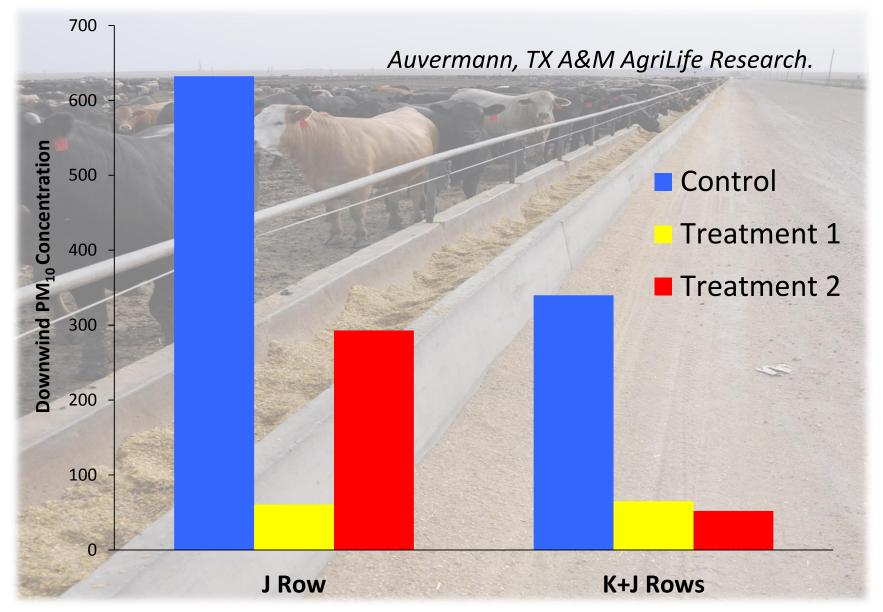
### Frequent pen scraping/manure harvest:


- <u>PM10 control efficiency (24-hr values): (Maghirang, KSU; Auvermann, TX AgriLife)</u>
  - PM<sub>10</sub> concentrations, before vs. after scraping
  - Reductions: mean = 40%; range = 11-61%.
- Prioritize and focus operations?
  - Begin downwind side, work upwind.
  - Cattle nearest slaughter weight
  - Operate when sun is highest
  - Remove manure immediately or compact to reduce redistribution.

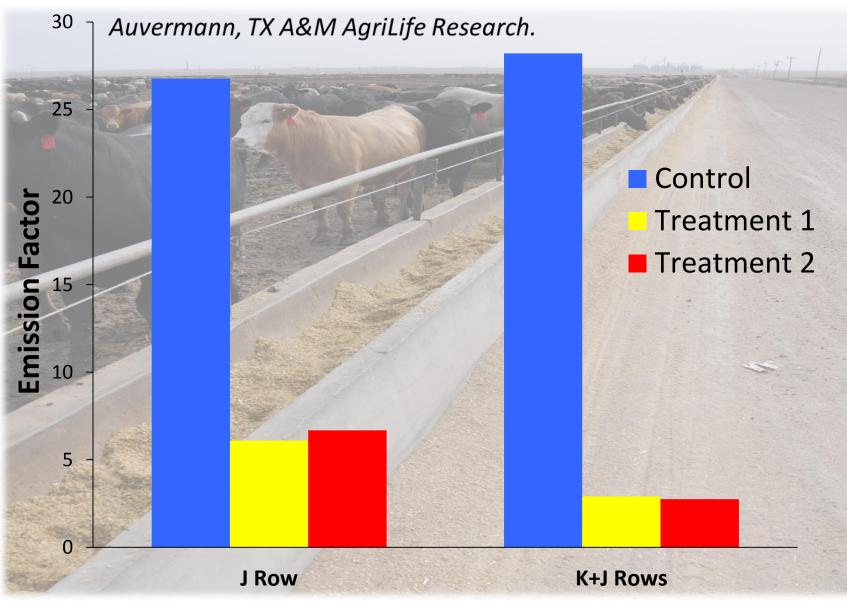


#### **Obj. A. Abatement Measures & Receptor Impacts**

#### **Stocking Density Treatments** (Auvermann)


| TREATMENT      | CTRL                                 | TRT1                | TRT2                                |  |  |
|----------------|--------------------------------------|---------------------|-------------------------------------|--|--|
| J-Row Block    | Pens J11-J19                         | Pens J6-J10         | Pens J1-J5                          |  |  |
| K-Row Block    | Pens K11-K19                         | Pens K6-K10         | Pens K1-K5                          |  |  |
| Cattle Spacing | 150 ft <sup>2</sup> hd <sup>-1</sup> | <b>75 ft</b> ² hd⁻¹ | 75 ft <sup>2</sup> hd <sup>-1</sup> |  |  |
| Method         | Method Industry Standard             |                     | Pen Area Reduced<br>50% by Fence    |  |  |




TEXAS AGM AGRILLIFE EXTENSION Mobile Monitoring Platforms ATEXAS AGM AGRILLIFE RESEARCH



#### Effect of Stocking Density on PM<sub>10</sub> Concentrations, $\mu g/m^3$



#### Effect of Stocking Density on PM10 Emission Factor, lbs/day/1,000 hd



# **Objective B.** <u>**Process-based emission models.**</u>

#### Process-based modeling:

- Mathematical expressions based on good understanding of emission source(s) & causal mechanisms.
- <u>Hypothet:</u>
  - Modeling prediction/evaluation is generally cheaper than infield monitoring; but requires robust models.
- <u>Major recent focus:</u>
  - Ammonia (Todd, Cole & Waldrip)
  - Particulate matter, PM (dust) (Maghirang & Auvermann)
  - Greenhouse gases: N<sub>2</sub>O, CH<sub>4</sub>, CO<sub>2</sub>. (Casey, Faulkner, Cole, Todd, Waldrip, Capareda, Mukhtar, Maghirang).

#### PM10 Conceptual Model, an example (Auvermann)

#### PM10 Emission Factor, EF (g/hd/d) = Pen Surface Dustiness, S (g/kJ) X Animal Activity, AA (kJ/hd/d)

In which:

- S = "[Intrinsic] dust susceptibility"
- <u>Key Factors Affecting S:</u> Varies spatially & temporally through 3 surface layer properties:
  - Moisture content
  - Bulk density
  - Depth
- USDA-NRCS Standard 375 addresses all three.
- Pen surface assessment tool,
  - Condition A, B, C, ...
  - Descriptors.



# Objective B. Process-based emission models.

- Measurement of GHG Fluxes from Feedyard Pens using NFT-NSS Chamber Techniques (Casey)
- **Objectives:**
- Develop understanding of spatial, temporal and seasonal variations in N<sub>2</sub>O and CH<sub>4</sub> fluxes from feedyard pen surfaces
- Collaborate with modelling community and *contribute to improving models* of GHGs from CAFOs.
  - Working with Heidi Waldrip USDA-ARS and through her with Al Rotz, Bill Salas et al.

#### Why Non-Flow-Through – Non-Steady-State Chambers?

#### Advantages:

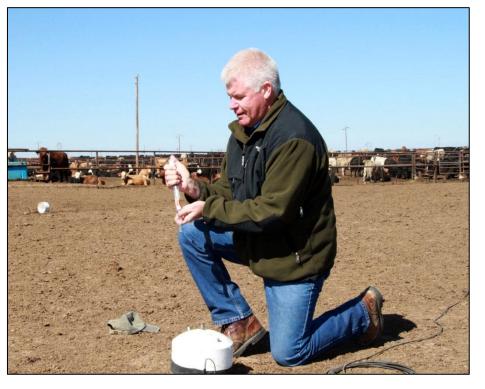
- Dominant technique used by scientists for measurement of GHG fluxes from other land and crop systems.
- Well developed methodology and well supported in the scientific literature
- Very useful for developing an understanding of the emission processes

#### Disadvantages:

- Small area measured by each chamber may not be representative of a large highly spatially varied area for determining overall emission rates
  - Integrative techniques such as eddy correlation (EC) and open path measurement :
    - face significant operational challenges in the feedlot environment
    - Instrumentation to continuously measure N<sub>2</sub>O at required speed and resolution is very expensive, has limited field deployment potential and is only just becoming available
    - Provides limited information for developing a understanding of the emission processes because the spatial variability masks the response of individual areas

### **GHG Sample Collection and Analysis**






NFT-NSS chamber with top installed and sealing skirt rolled up.

Two rows of five NFT-NSS chambers installed in a pen at Feedyard-C.

# **GHG Sample Collection and Analysis**

K.D. Casey





Gas chromatograph used for analysis of GHG samples.

Air sample collected from NFT-NSS chamber being injected into an evacuated vial.

### Methane and nitrous oxide flux rates for different pen areas (κ.D. Casey)

| Feedlot        | Greenhouse Gas Flux Rates (mg m <sup>-2</sup> h <sup>-1</sup> ) |                  |                   |                  |                 |                  |                      |                  |                 |                  |                         |                  |
|----------------|-----------------------------------------------------------------|------------------|-------------------|------------------|-----------------|------------------|----------------------|------------------|-----------------|------------------|-------------------------|------------------|
|                | Overall                                                         |                  | Near Feed<br>Bunk |                  | On Mound        |                  | Near Water<br>Trough |                  | Mound Edge      |                  | Visually<br>Wetter Area |                  |
|                | CH <sub>4</sub>                                                 | N <sub>2</sub> O | CH <sub>4</sub>   | N <sub>2</sub> O | CH <sub>4</sub> | N <sub>2</sub> O | $CH_4$               | N <sub>2</sub> O | CH <sub>4</sub> | N <sub>2</sub> O | CH <sub>4</sub>         | N <sub>2</sub> O |
| Fyd-C – Oct 12 | 10.96                                                           | 0.03             | 17.80             | 0.03             | 5.98            | 0.04             | 12.24                | 0.03             | 2.95            | 0.06             | 33.63                   | 0.00             |
| Fyd-A – Nov 12 | 4.85                                                            | 9.85             | 7.66              | 46.57            | 2.95            | 4.05             | 2.91                 | 1.32             |                 |                  | 2.27                    | 2.04             |
| Fyd-C – Nov 12 | 1.40                                                            | 0.15             | 1.82              | 0.01             | 0.10            | 0.45             | 0.74                 | 0.26             | 0.17            | 0.14             |                         |                  |
| Fyd-C – Dec 12 | 2.03                                                            | 0.13             | 0.90              | 0.02             | 0.08            | 0.05             | 1.03                 | 0.15             | 1.35            | 0.29             | 6.79                    | 0.04             |

# Average methane and nitrous oxide flux rates for each study, mg m<sup>-2</sup> h<sup>-1</sup>

|      | Feedyard-A<br>5-9 Nov 2012 |                       | Feedyard-C           |                       |                      |                       |                      |                       |  |
|------|----------------------------|-----------------------|----------------------|-----------------------|----------------------|-----------------------|----------------------|-----------------------|--|
|      |                            |                       | 21-25 Oct 2012       |                       | 26-30 Nov 2012       |                       | 10-14 Dec 2012       |                       |  |
|      | CH <sub>4</sub> Flux       | N <sub>2</sub> O Flux | CH <sub>4</sub> Flux | N <sub>2</sub> O Flux | CH <sub>4</sub> Flux | N <sub>2</sub> O Flux | CH <sub>4</sub> Flux | N <sub>2</sub> O Flux |  |
| Avg. | 4.85                       | 9.85                  | 10.96                | 0.03                  | 1.40                 | 0.15                  | 2.03                 | 0.13                  |  |
| s.d. | 3.26                       | 32.55                 | 11.96                | 0.04                  | 1.35                 | 0.23                  | 6.31                 | 0.34                  |  |

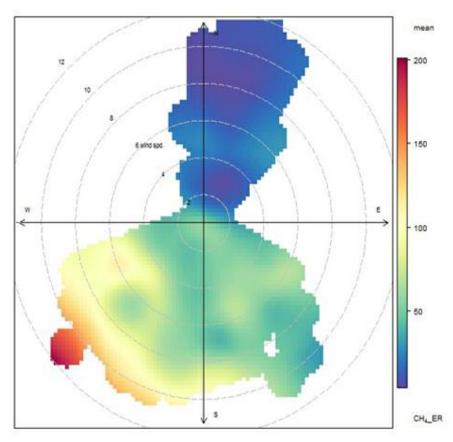
#### Tentative Observations, CH4 & N2O flux rates (K.D. Casey)

#### Methane flux rates:

- Reduced with the seasonal decline in ambient temperature.
- Highest from areas where the manure pack was visually more moist, including near the feed bunk and wet patches.
- **<u>Nitrous oxide flux rates</u>** were much higher at Feedyard-A than at Feedyard-C.
  - This variation could result from the different manure management practices at the feedyards, with Feedyard-A harvesting manure from the pens twice per year whereas manure removal was performed annually at Feedyard-C.
  - Highest at sampling positions on a manure mound, on the edges of manure mounds and near the water trough.
- <u>Manure pack temperature</u> at 50 mm (2 inches) depth generally follows ambient temperature for the same interval.
  - Flux rates respond quickly to changes in temperature
  - Implying the generation process is in the surface layer of the manure pack
- Overall--Considerable **spatial variability** in emission fluxes within each pen.

### Open-Path FTIR , Methane & Nitrous oxide emissions (W.B. Faulkner & K.D. Casey)

 Goal - develop baseline greenhouse gas (GHG) emissions data from a Texas cattle feeding operations






- Issues
  - Dust obscured optics
  - Alignment issues
  - Inter-instrument bias

### **Open-Path FTIR**, Uncorrected Results

- Apparent bias between the two instruments must be addressed.
- No established calibration methods for open path bi-static systems.



| Compound            | Avg. Uncorrected Emission Rate |  |  |  |  |
|---------------------|--------------------------------|--|--|--|--|
| Methane (CH4)       | 45.7 μg/m2/s                   |  |  |  |  |
| Nitrous Oxide (N2O) | 14.6 μg/m2/s                   |  |  |  |  |

#### **Next Steps Related to OP-FTIR**

(Brock Faulkner)

- Send northern (downwind) FTIR to MIDAC for repair.
- Setup both FTIRs side-by-side.
- Determine if post-hoc data correction can be conducted.

# Objective C. <u>Dispersion modeling</u>, <u>emission</u> <u>factors & regulation</u>.

### • Particulate matter, PM10:

- Developed correction factors for non-EDP conditions; translates measured concentrations from EPA's FRM vs. TEOM sampler types (*Parnell, Faulkner & Auvermann*).
  - For low PM10 concentration (<100 μg/m2) & small particles (<10 μg</li>
    MMD): FRM concentrations = TEOM concentrations.
  - For high PM10 Conc. (>100  $\mu g/m2)$  & larger MMD (>10  $\mu m$ ): FRM= 0.6 x TEOM results.
  - If oversampling bias due to very large PM sizes:
    - FRM conc. = 0.5 x TEOM results.
  - TEOM concentrations of PM10 at Fyd. C, non-EDP conditions (20 hrs/day), averaged: Sept. 169; Oct. 107; Nov. 43; Dec. 63 μg/m2.
  - Derived Emission Factors (non-EDP conditions) varied 3-36
    lbs/PM10/1,000 hd/day (11.5 average).

#### Objective C. Dispersion modeling, emission factors & regulation.

- Greenhouse gases, GHG:
- Open-path FTIR at Fyd. C to measure nitrous oxide (N<sub>2</sub>O) emissions
  Downwind vs. Upwind N<sub>2</sub>O increased ~160 ppb across the feedyard. (*Faulkner & Casey*)
- Back-calculated emission rates were (*Faulkner & Casey*):
  - N<sub>2</sub>O = 14.6 μg/m2/sec;
  - CH<sub>4</sub> = 45.7 μg/m2/sec.
- Flux chambers had higher uncertainty values than source-integrated OP-FTIR & required more labor. (*Faulkner & Casey*)
- OP-FTIR had equipment issues.
- Simultaneous use of both source-specific & source-integrated sampling, may improve accuracy of determining GHG emission factors. (*Faulkner & Casey*)

# Objective C. Dispersion modeling, emission factors & regulation.

- Feedyard GHG (Capareda et al.)
- Flux chamber approach, discrete sources.
- Emitting surface areas: feedpens (89%), retention ponds (5%), compost windrows/piles (6%).
- Aggregated Emission Rates (ERs) per head:
  - Methane, CH4 = 3.8 g/hd/day.
  - Nitrous oxide, N2O = 0.52 g/hd/day.
  - Carbon dioxide, CO2 = 1,192 g/hd/day.
- Relative contributions:
  - Methane, CH4 : pen surfaces (51%), retention ponds (48%), composting (1%).
  - Nitrous oxide, N2O : pens (81%), retention ponds (2%), composting (17%).
- Feedyard values of ER were lower than dairy ER values.

### Objective D.

### **Technology Transfer to Stakeholders**

- Final-year report:
- Stakeholder Advisory Committee, met w/investigators 2011 & 2012.
- In-depth short courses (8) for state regulators TX, KS, IA, etc.
- Annual updates to TCFA Research Committee.
- County Extension & TCFA feedyard management seminars (7), May 2013—So. Tx, So. Plains, Panhandle.
- Bulletins & fact sheets (10)— *eXtension* websites, UN-L/NLPELC & AgriLife Extension.
- Policy-relevant summaries—1 ready; 5 drafted.
- Webinars (8)– ditto.
- Co-Funding: \$0.9 million, (0.9:1 leveraging of federal dollars).
- Presentations (22), prof. papers or abstracts (24); 32 peerreviewed journal articles; M.S. theses (2).